logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Role of oxidative stress in the development of complications in patients with diabetes mellitus

[Reviews]
Jury Bykov;

An increase in the prevalence and growth of the number of complications of diabetes mellitus affect the quality of life of patients and mortality indicators. The main complications of diabetes include cardiovascular diseases, diabetic polyneuropathy, nephropathy, retinopathy and encephalopathy, the pathogenesis of which has not been fully studied. One of the promising areas of the search for pathophysiological mechanisms of diabetes is the theory of oxidative stress. It is known that diabetes provokes and enhances oxidative stress with the accumulation of free radical oxidation products due to chronic hyperglycemia and insulin production disorders, which leads to a progression of complications. Oxidizing stress biomarkers can be useful in the diagnosis of diabetes complications, including brain dysfunction. Further research is needed to study oxidative stress, which will improve the quality of diagnosis and treatment of diabetes.

Download

References:
1. Papachristoforou E., Lambadiari V., Maratou E., Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J. Diabetes Res. 2020;2020:7489795. https://doi.org/10.1155/2020/7489795
2. American Diabetes Association 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes- 2020. Diabetes Care. 2020;43(Suppl. S1):S14-S31. https://doi.org/10.2337/dc20-S002
3. Dhalla N. S., Shah A. K., Tappia P. S. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int. J. Mol. Sci. 2020;21(7):2413. https://doi.org/10.3390/ijms21072413
4. Bommer C., Sagalova V., Heesemann E., Manne-Goehler J., Atun R. [et al.]. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care. 2018;41(5):963-970. https://doi.org/10.2337/dc17-1962
5. Yaribeygi H., Sathyapalan T., Atkin S. L., Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 2020;2020:8609213. https://doi.org/10.1155/2020/8609213
6. Makrilakis K., Liatis S., Tsiakou A., Stathi C., Papachristoforou E. [et al.]. Comparison of health-related quality of Life (HRQOL) among patients with pre-diabetes, diabetes and normal glucose tolerance, using the 15D-HRQOL questionnaire in Greece: the DEPLAN study. BMC Endocr. Disord. 2018;18(1):32. https://doi.org/10.1186/s12902-018-0261-3
7. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of Comorbidities:Standards of medical care in diabetes-2020. Diabetes Care. 2019;43(1):37-47. https://doi.org/10.2337/dc20-S004
8. Belosludtsev K. N., Belosludtseva N. V., Dubinin M. V. Diabetes mellitus, mitochondrial dysfunction and ca2+-dependent permeability transition Pore. Int. J. Mol. Sci. 2020;21(18):6559. https://doi.org/10.3390/ijms21186559
9. Garber A. J., Handelsman Y., Grunberger G., Einhorn D., Abrahamson M. J. [et al.]. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2020 executive summary. Endocr. Pract. 2020;26:107-139. https://doi.org/10.4158/CS-2019-0472
10. Charlton A., Garzarella J., Jandeleit-Dahm K. A. M., Jha J. C. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology (Basel). 2020;10(1):18. https://doi.org/10.3390/biology10010018
11. Liyanagamage D. S., Martinus R. D. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020;2020:8073516. https://doi.org/10.1155/2020/8073516
12. Feldman E. L., Callaghan B. C., Pop-Busui R., Zochodne D. W., Wright D. E. [et al.]. Diabetic neuropathy. Nat. Rev. Dis. Primers. 2019;5:41. https://doi.org/10.1038/s41572-019-0092-1
13. Yaribeygi H., Katsiki N., Behnam B., Iranpanah H., Sahebkar A. MicroRNAs and type 2 diabetes mellitus: molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism. 2018;87:48-55. https://doi.org/10.1016/j.metabol.2018.07.001
14. Yaribeygi H., Farrokhi F. R., Butler A. E., Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J. Cell. Physiol. 2019;234(6):8152-8161. https://doi.org/10.1002/jcp.27603
15. Pasupuleti V. R., Arigela C. S., Gan S. H., Salam S. K. N., Krishnan K. T., Rahman N. A., Jeffree M. S. A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid. Med. Cell. Longev. 2020;2020:8878172. https://doi.org/10.1155/2020/8878172
16. García-Sánchez A., Miranda-Díaz A. G., Cardona-Muñoz E. G. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid. Med. Cell. Longev. 2020;2020:2082145. https://doi.org/10.1155/2020/2082145
17. Pickering R. J., Rosado C. J., Sharma A., Buksh S., Tate M., de Haan J. B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunol. 2018;7:1016. https://doi.org/10.1002/cti2.1016
18. Asmat U., Abad K., Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi. Pharm. J. 2016;24(5):547-553. https://doi.org/10.1016/j.jsps.2015.03.013
19. Sifuentes-Franco S., Pacheco-Moisés F. P., Rodríguez-Carrizalez A. D., Miranda-Díaz A. G. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes. Res. 2017;2017:1673081. https://doi.org/10.1155/2017/1673081
20. Deng L., Du C., Song P., Chen T., Rui S. [et al.]. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021;2021:8852759. https://doi.org/10.1155/2021/8852759
21. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F. [et al.]. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763
22. Oguntibeju O. O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11:45-63.
23. Qadir M. M. F., Klein D., Álvarez-Cubela S., Domínguez-Bendala J., Pastori R. L. The role of microRNAs in diabetes-related oxidative stress. Int. J. Mol. Sci. 2019;20(21):5423. https://doi.org/10.3390/ijms20215423
24. Jha J. C., Banal C., Chow B. S., Cooper M. E., Jandeleit- Dahm K. Diabetes and kidney disease: Role of oxidative stress. Antioxid. Redox Signal. 2016;25:657-684. https://doi.org/10.1089/ars.2016.6664
25. Staveness D., Bosque I., Stephenson C. R. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res. 2016;49(10):2295-2306. https://doi.org/10.1021/acs.accounts.6b00270
26. Angelova P. R., Abramov A. Y. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Letters. 2018;592(5):692-702. https://doi.org/10.1002/1873-3468.12964
27. Sies H., Berndt C., Jones D. P. Oxidative stress. Annu. Rev. Biochem. 2017;86:715-748. https://doi.org/10.1146/annurev-biochem-061516-045037
28. Radi R., Denicola A., Morgan B., Zielonka J. Foreword to the free radical biology and medicine special issue on current fluorescence and chemiluminescence approaches in free radical and redox biology. Free Radic. Biol. Med. 2018;128:1-2. https://doi.org/10.1016/j.freeradbiomed.2018.09.027
29. Barrera G., Pizzimenti S., Daga M., Dianzani C., Arcaro A. [et al.]. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants. 2018;7:102. https://doi.org/10.3390/antiox7080102
30. Ayala A., Muñoz M. F., Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014;2014:1-31. https://doi.org/10.1155/2014/360438
31. Gaschler M. M., Stockwell B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017;482:419-425. https://doi.org/10.1016/j.bbrc.2016.10.086
32. Cadet J., Wagner J. R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Boil. 2013;5:a012559. https://doi.org/10.1101/cshperspect.a012559
33. Calderon G., Juarez O., Hernandez G., Punzo S., de la Cruz Z. Oxidative stress and diabetic retinopathy: Development and treatment. Eye. 2017;31:1122-1130. https://doi.org/10.1038/eye.2017.64
34. Sindhu S., Akhter N., Arefanian H., Abu Al-Roub A., Ali S. [et al.]. Increased circulatory levels of fractalkine (CX3CL1) are associated with inflammatory chemokines and cytokines in individuals with type-2 diabetes. J. Diabetes. Metab. Disord. 2017;16(1):15. https://doi.org/10.1186/s40200-017-0297-3
35. Gupta S., Maratha A., Siednienko J., Natarajan A., Gajanayake T. [et al.]. Analysis of inflammatory cytokine and TLR expression levels in type 2 diabetes with complications. Sci. Rep. 2017;7(1, article 7633). https://doi.org/10.1038/s41598-017-07230-8
36. Keane K. N., Cruzat V. F., Carlessi R., de Bittencourt P. I. H., Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid. Med. Cel. Longev. 2015;2015:15. https://doi.org/10.1155/2015/181643.181643
37. Kaur R., Kaur M., Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018;17(1):121. https://doi.org/10.1186/s12933-018-0763-3
38. Bigagli E., Lodovici M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxid. Med. Cell. Longev. 2019;2019:5953685. https://doi.org/10.1155/2019/5953685
39. Qiu Q. Y., Zhang B. L., Zhang M. Z., Wu J. H., Zhou J. W. [et al.]. Combined influence of insulin resistance and inflammatory biomarkers on type 2 diabetes: a population- based prospective cohort study of inner Mongolians in China. Biomed. Environ. Sci. 2018;31(4):300-305. https://doi.org/10.3967/bes2018.038
40. Daryabor G., Atashzar M. R., Kabelitz D., Meri S., Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582
41. Gerber P. A., Rutter G. A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox. Signal. 2017;26(10):501-518. https://doi.org/10.1089/ars.2016.6755
42. Wang J., Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cel. Longev. 2017;2017:9. https://doi.org/10.1155/2017/1930261.1930261
43. Wortham M., Sander M. Mechanisms of beta-cell functional adaptation to changes in workload. Diabet. Obes. Metab. 2016;18(Suppl 1):S78-S86. https://doi.org/10.1111/dom.12729
44. Lee J., Ma K., Moulik M., Yechoor V. Untimely oxidative stress in β-cells leads to diabetes – role of circadian clock in β-cell function. Free Radic. Biol. Med. 2018;119:69-74. https://doi.org/10.1016/j.freeradbiomed.2018.02.022
45. Alarifi S., Alkahtani S., Alessia M. S. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomedicine. 2017;12:4541-4551. https://doi.org/10.2147/IJN.S139326
46. Kang B., Wang X., Xu Q., Wu Y., Si X., Jiang D. Effect of 3-nitropropionic acid inducing oxidative stress and apoptosis of granulosa cells in geese. Biosci. Rep. 2018;38(5, article BSR20180274). https://doi.org/10.1042/BSR20180274
47. Schwartz S. S., Epstein S., Corkey B. E., Grant F. A., Iii J. R. [et al.]. A unified pathophysiological construct of diabetes and its complications. Trends. Endocrinol. Metab. 2017;28(9):645-655. https://doi.org/10.1016/j.tem.2017.05.005
48. Muriach M., Flores-Bellver M., Romero F. J., Barcia J. M. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev. 2014;2014:102158. https://doi.org/10.1155/2014/102158
49. Li W., Roy Choudhury G., Winters A., Prah J., Lin W. [et al.]. Hyperglycemia alters astrocyte metabolism and inhibits astrocyte proliferation. Aging Dis. 2018;9(4):674-684. https://doi.org/10.14336/AD.2017.1208
50. Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018;122(6):877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401

Keywords: diabetes mellitus, oxidative stress, free radicals, complications


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy