Site search
Correspondence address
310 Mira Street, Stavropol, Russia, 355017
Tel
+7 865 2352511, +7 865 2353229.
E-mail
medvestnik@stgmu.ru
The journal is included into The list of leading scientific periodicals.
The journal is included into VINITI database and is registered in Electronic scientific library.
The journal is indexed by SCOPUS, Ulrich's International Periodicals Directory.
[Experimental medicine]
Vitalina Igorevna Petrenko; Yulia Sergeevna Saenko; Arzy Server kizy Khalilova; Veronika Sergeevna Ostapova; Alina Alekseevna Shevandova; Olga Valerievna Ostapenko; Irina Ivanovna Fomochkina; Anatoly Vladimirovich Kubyshkin;
Metabolic syndrome (MS) is a complex of disorders closely associated with developing the non-alcoholic fatty liver disease (NAFLD) accompanied by a violation of the intestinal microbiota. An assessment of morphological changes in the liver and intestines during the development of experimental metabolic syndrome in rats was carried out. The study was performed on 32 Wistar white rats aged 10–12 months using a 60 % fructose feeding pattern for 16 weeks as the MS model. It has been established that the fructose feeding model in rats causes the development of NAFLD with the result of a violation of the bar structure of the lobules, moderate intralobular inflammation, and the formation of hepatocellular granular dystrophy and perisinusoidal fibrosis. In the intestinal villi, destruction of apical epithelial cells and changes in cell nuclei are observed. Thus, the development of MS in rats is accompanied by the formation of signs of non-alcoholic steatohepatosis and damage to intestinal cells, which confirms the involvement of these organs as the primary target organs in MS, and contributes to the development of metabolic, dysbiotic, and inflammatory disorders.
References:
1. Reyes S. J., Pak T., Moon T. S. Metabolic syndrome – Evidence-based strategies for patient optimization. Best Pract. Res. Clin. Anaesthesiol. 2020;34(2):131-140. https://doi.org/10.1016/j.bpa.2020.04.002
2. Alberti K. G., Zimmet P., Shaw J. Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006;23(5):469-80. https://doi.org/10.1111/j.1464-5491.2006.01858.x
3. Dietrich P., Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014;28(4):637-653. https://doi.org/10.1016/j.bpg.2014.07.008
4. Cobbina E., Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017;49(2):197-211. https://doi.org/10.1080/03602532.2017.1293683
5. Pascale A., Marchesi N., Marelli C., Coppola A., Luzi L. [et al.] Microbiota and metabolic diseases. Endocrine. 2018;61(3):357-371. https://doi.org/10.1007/s12020-018-1605-5
6. Rao S. S., Rattanakovit K., Patcharatrakul T. Diagnosis and management of chronic constipation in adults. Nat. Rev. Gastroenterol. Hepatol. 2016;13(5):295-305. https://doi.org/10.1038/nrgastro.2016.53
7. Wong S. K., Chin K.-Y., Suhaimi F. H., Fairus A., ImaNirwana S. Animal models of metabolic syndrome: a review. Nutr. Metab. 2016;13:65. https://doi.org/10.1186/s12986-016-0123-9
8. Leclercq I. A., Farrell G. C., Schriemer R., Robertson G. R. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 2002;37(2):206-213. https://doi.org/10.1016/s0168-8278(02)00102-2
9. Li Z., Oben J. A., Yang S., Lin H., Stafford E. A. [et al.] Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis. Hepatology. 2004;40(2):434-441. https://doi.org/10.1002/hep.20320
10. Rath E., Moschetta A., Haller D. Mitochondrial function – gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018;15(8):497-516. https://doi.org/10.1038/s41575-018-0021-x
11. Rosselli M., Lotersztajn S., Vizzutti F., Arena U., Pinzani M. [et al.] The Metabolic Syndrome and Chronic Liver Disease. Cur. Pharm. Des. 2014;20(31):50105024. https://doi.org/10.2174/1381612819666131206111352
12. Lonardo A., Ballestri S., Marchesini G., Angulo P., Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 2015;47(3):181-190. https://doi.org/10.1016/j.dld.2014.09.020
13. Lim J. S., Mietus-Snyder M., Valente A., Schwarz J. M., Lustig R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010;7(5):251-264. https://doi.org/10.1038/nrgastro.2010.41
14. Andres-Hernando A., Orlicky D. J., Kuwabara M., Ishimoto T., Nakagawa T. [et al.] Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. Cell Metabol. 2020;32(1):117-127. https://doi.org/10.1016/j.cmet.2020.05.012
15. Zhou X., Han D., Xu R., Li S., Wu H. [et al.] A Model of Metabolic Syndrome and Related Diseases with Intestinal Endotoxemia in Rats Fed a High Fat and High Sucrose Diet. PLoS ONE. 2014;9(12):115-148. https://doi.org/10.1371/journal.pone.0115148
16. Shojaee-Moradie F., Ma Y., Lou S., Hovorka R., Umpleby A. M. Prandial Hypertriglyceridemia in Metabolic Syndrome Is Due to an Overproduction of Both Chylomicron and VLDL Triacylglycerol. Diabetes. 2013;62(12):4063-4069. https://doi.org/10.2337/db13-0935
17. Dabke K., Hendrick G., Devkota S. The gut microbiome and metabolic syndrome. J. Clin. Investig. 2019;129(10):4050-4057. https://doi.org/10.2337/db13-0935
Keywords: metabolic syndrome, liver, intestines, non-alcoholic fatty liver disease, microbiota