logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

The effect of photoperiod and exogenous melatonin on proliferation and apoptosis of spleen lymphocytes

[Experimental medicine]
Elena Mikhailovna Luzikova; Vazgenovich Oganesyan Levon; Olga Aleksandrovna Efremova; Alexander Vladimirovich Moskovsky; Dmitry O. Sumbayev; Ayrat Rafailovich Abuzarov; Valentina Efremovna Sergeeva;

The effect of melatonin on the proliferation (Ki-67+) and apoptosis (Сaspasa-3+) of spleen cells of mice kept experimentally under natural photoperiod conditions and in the absence of photoperiod (with constant darkening) was studied. Our studies have shown that the processes of apoptosis and proliferation are photo dependent: stimulation of proliferation and apoptosis of lymphocytes by melatonin is possible with a natural photoperiod. The introduction of melatonin in the absence of a photoperiod, on the contrary, reduces apoptosis and proliferation of lymphocytes and cells of the spleen stroma both in the red and in the white pulp, which is a manifestation of the adaptogenic effect of melatonin.

Download

References:
1. Duffy J. F., Wright K. P. Jr. Entrainment of the human circadian system by light. J. Biol. Rhythms. 2005;20(4):326-338. https://doi.org/10.1177/0748730405277983
2. Reiter R. J., Rosales-Corral S., Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv. Med. Sci. 2020;65(2):394-402. https://doi.org/10.1016/j.advms.2020.07.001
3. Arushanyan E., Shchetinin E. Pineal hormone melatonin as universal modulator of any pathological processes. Medical News of North Caucasus. 2014;9(2):187-198. https://doi.org/10.14300/mnnc.2014.09054
4. Reiter R. J., Tan D. X., Galano A. Melatonin: exceeding expectations. Physiology. 2014;29(5):325-333. https://doi.org/10.1152/physiol.00011.2014
5. Mancio J., Leal C., Ferreira M., Norton P., Lunet N. Does the association of prostate cancer with night-shift work differ according to rotating vs. fixed schedule? A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2018;21(3):337-344. https://doi.org/10.1038/s41391-018-0040-2
6. Barul C., Richard H., Parent M. E. Night-Shift Work and Risk of Prostate Cancer: Results From a Canadian Case-Control Study, the Prostate Cancer and Environment Study. Am. J. Epidemiol. 2019;188(10):1801-1811.
https://doi.org/10.1093/aje/kwz167
7. Copertaro A., Bracci M. Working against the biological clock: a review for the Occupational Physician. Ind. Health. 2019;57(5):557-569. https://doi.org/10.2486/indhealth.2018-0173
8. Pham T. T., Lee E. S., Kong S. Y., Kim J., Kim S. Y. [et al.]. Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: evidence from a case-control study in Korean women. Sci. Rep. 2019;9(1):10982. https://doi.org/10.1038/s41598-019-47480-2
9. Litvinenko G. I., Shurlygina A. V., Gritsyk O. B., Mel’nikova E. V., Tenditnik M. V. [et al.] Effects of Melatonin on Morphological and Functional Parameters of the Pineal Gland and Organs of Immune System in Rats During Natural Light Cycle and Constant Illumination. Bull. Exp. Biol. Med. 2015;159(1):62-65. https://doi.org/10.1007/s10517-015-3061-z
10. Markus R. P., Sousa K. S., da Silveira Cruz-Machado S., Fernandes P. A., Ferreira Z. S. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int. J. Mol. Sci. 2021;22(22):12143. https://doi.org/10.3390/ijms222212143
11. Singh A., Singh R., Tripathi M. K. Photoperiodic manipulation modulates the innate and cell mediated immune functions in the fresh water snake, Natrix piscator. Sci. Rep. 2020;10(1):14722. https://doi.org/10.1038/s41598-020-71777-2
12. Sánchez-Bretaño A., Baba K., Janjua U., Piano I., Gargini C., Tosini G. Melatonin partially protects 661W cells from H(2)O(2)-induced death by inhibiting Fas/FasLcaspase-3. Mol. Vis. 2017;23:844-852.
13. Sharma S., Sarkar J., Haldar C., Sinha S. Melatonin Reverses Fas, E2F-1 and Endoplasmic Reticulum Stress Mediated Apoptosis and Dysregulation of Autophagy Induced by the Herbicide Atrazine in Murine Splenocytes. PLoS One. 2014;9(9):e108602. https://doi.org/10.1371/journal.pone.0108602
14. Sun Y., Liu W. Z., Liu T., Feng X., Yang N., Zhou H. F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 2015;35(6):600-604. https://doi.org/10.3109/10799893.2015.1030412
15. Markova E. V., Anikeeva O. S., Savkin I. V., Kozlov V. A. Proliferation and apoptosis of experimental animal’s lymphocytes after multiple transplantation of immune cells from opposite behavioral types of donors carried out in the juvenile period. Bulleten Sibirskoj Medicini. – Bulletin of Siberian Medicine. 2019;18(2):119-126. (In Russ.). https://doi.org/10.20538/1682-0363-2019-2-119-126
16. Giudice A., Crispo A., Grimaldi M., Polo A., Bimonte S. [et al.]. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules. 2018;23(6):1308. https://doi.org/10.3390/molecules23061308
17. Champney T. H., Prado J., Youngblood T., Appel K., Mc-Murray D. N. Immune responsiveness of splenocytes after chronic daily melatonin administration in male Syrian hamsters. Immunol. Lett. 1997;58(2):95-100. https://doi.org/10.1016/s0165-2478(97)00039-4
18. Ahmad R., Haldar C. Photoperiodic regulation of MT1 and MT2 melatonin receptor expression in spleen and thymus of a tropical rodent Funambulus pennanti during reproductively active and inactive phases. Chronobiol. Int. 2010;27(3):446-462. https://doi.org/10.3109/07420521003666408
19. Estaras M., Peña F. J., Tapia J. A., Fernandez-Bermejo M., Mateos J. M. [et al.]. Melatonin modulates proliferation of pancreatic stellate cells through caspase-3 activation and changes in cyclin A ad D expression. J. Physiol. Biochem. 2020;76(2):345-355. https://doi.org/10.1007/s13105-020-00740-6

Keywords: spleen, melatonin, photoperiod, proliferation, apoptosis


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy