logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

The role of oxidative stress in the pathogenesis of socially significant human diseases and ways of its drug correction

[Reviews]
Yury Olefir; Boris Konstantinovich Romanov; Vladimir Kukes; Dmitry Sychev; Alexey Prokofiev; Olga Konstantinovna Parfenova; Nikita Gennadievich Sidorov; Tatiana Vladimirovna Alexandrova;

The review article describes the role of oxidative stress in the development of socially significant pathologies and approaches to its neutralization. It is shown that the mechanism of oxidative stress is the same in different pathologies, but the consequences of its development may differ. It was found that oxidative stress is one of the main factors in the pathogenesis of severe forms of new coronavirus infection, accompanied by the accumulation of acidic products in the blood and tissues and an increase in the level of Pro-inflammatory cytokines. Various classifications of antioxidant drugs are presented, as well as the pharmacotherapeutic capabilities of domestic low toxic antioxidants: medicinal product containing succinic acid, inosine, nicotinamide and riboflavin, ethyl methyl hydroxypyridine malate and ethyl methyl hydroxypyridine succinate.

Download

References:
1. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-183. https://doi.org/10.1016/j.redox.2015.01.002
2. Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020;57:100982. https://doi.org/10.1016/j.arr.2019.100982
3. Vona R., Gambardella L., Cittadini C., Straface E., Pietraforte D. Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. Oxid. Med. Cell. Longev. 2019;2019:8267234. https://doi.org/10.1155/2019/8267234
4. Ichiishi E., Li X. K., Iorio E. L. Oxidative Stress and Diseases: Clinical Trials and Approaches. Oxid. Med. Cell. Longev. 2016;2016:3458276. https://doi.org/10.1155/2016/3458276
5. Kelley E. E., Paes A. M., Yadav H., Quijano C., Cassina A., Trostchansky A. Interplay between Oxidative Stress and Metabolism in Signalling and Disease 2016. Oxid. Med. Cell. Longev. 2017;2017:7013972. https://doi.org/10.1155/2017/7013972
6. Jones D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell. Physiol. 2008;295(4):849-868. https://doi.org/10.1152/ajpcell.00283.2008
7. Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014;395(2):203-230. https://doi.org/10.1515/hsz-2013-0241
8. Navarro-Yepes J., Burns M., Anandhan A., Khalimonchuk O., del Razo L. M. [et al.]. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal. 2014;21(1):66-85. https://doi.org/10.1089/ars.2014.5837
9. Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids. 2009;157(1):1-11. https://doi.org/10.1016/j.chemphyslip.2008.09.004
10. Parra-Ortiz E., Browning K. L., Damgaard L. S. E., Nordström R., Micciulla S. [et al.]. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J. Colloid Interface Sci. 2019;538:404-419. https://doi.org/10.1016/j.jcis.2018.12.007
11. Bahja J., Dymond M. K. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic. Biol. Med. 2021;171:191-202. https://doi.org/10.1016/j.freeradbiomed.2021.05.021
12. Rehman K., Akash M. S. H. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J. Cell. Biochem. 2017;118(11):3577-3585. https://doi.org/10.1002/jcb.26097
13. Luc K., Schramm-Luc A., Guzik T. J., Mikolajczyk T. P. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019;70(6). https://doi.org/10.26402/jpp.2019.6.01
14. Jha J. C., Ho F., Dan C., Jandeleit-Dahm K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin. Sci. (Lond). 2018;132(16):1811-1836. https://doi.org/10.1042/CS20171459
15. Odegaard A. O., Jacobs D. R. Jr., Sanchez O. A., Goff D. C. Jr., Reiner A. P., Gross M. D. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc. Diabetol. 2016;15:51. https://doi.org/10.1186/s12933-016-0369-6
16. Sinha N., Dabla P. K. Oxidative stress and antioxidants in hypertension-a current review. Curr. Hypertens. Rev. 2015;11(2):132-142. https://doi.org/10.2174/1573402111666150529130922
17. Chen Y., Li S., Guo Y., Yu H., Bao Y. [et al.]. Astaxanthin Attenuates Hypertensive Vascular Remodeling by Protecting Vascular Smooth Muscle Cells from Oxidative Stress-Induced Mitochondrial Dysfunction. Oxid. Med. Cell. Longev. 2020;2020:4629189. https://doi.org/10.1155/2020/4629189
18. Hardy C. L., King S. J., Mifsud N. A., Hedger M. P., Phillips D. J. [et al.]. The activin A antagonist follistatin inhibits cystic firosis-like lung inflmmation and pathology. Immunol. Cell. Biol. 2015;93(6):567-574. https://doi.org/10.1038/icb.2015.7
19. Du J., Yin G., Hu Y., Shi S., Jiang J. [et al.]. Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative tress and promoting angiogenesis via the TGFbeta/ALK1/Smad1/5 signaling pathway. Aging (Albany NY). 2020;13(1):877-893. https://doi.org/10.18632/aging.202194
20. Delgado-Roche L., Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch. Med. Res. 2020;51(5):384- 387. https://doi.org/10.1016/j.arcmed.2020.04.019
21. Dandekar A., Mendez R., Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol. Biol. 2015;1292:205-214. https://doi.org/10.1007/978-1-4939-2522-3_15
22. Alkadi H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets. 2020;20(1):16-26. https://doi.org/10.2174/1871526518666180628124323
23. García-Sánchez A., Miranda-Díaz A. G,. Cardona-Mu-ñoz E. G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxid. Med. Cell. Longev. 2020;2020:2082145. https://doi.org/10.1155/2020/2082145
24. Kontoghiorghes G. J., Kontoghiorghe C. N. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert. Opin. Investig. Drugs. 2019;28(7):593-603. https://doi.org/10.1080/13543784.2019.1631284
25. Bazhanova E. D., Sokolova Y. O., Teplyi D. L. Effects of cytoflavin on neuronal apoptotic processes in the murine cerebral cortex on a model of physiologicaland pathological aging. Arkh. Patol. 2019;81(4):59-65. https://doi.org/10.17116/patol20198104159
26. Yagudina R. I., Kulikov A. Y., Krylov V. A., Solovieva E. Y., Fedin A. I. Pharmacoeconomic analysis of the neuroprotective medicines in the treatment of ischemic stroke. Zh. Nevrol. Psikhiatr. im. S. S. Korsakova. 2019;119(7):60-68. https://doi.org/10.17116/jnevro201911907160
27. Belova L. A., Mashin V. V., Kolotik-Kameneva O. Y., Belova N. V., Scuderi A. [et al.]. The influence of cytoflavin on clinical and vegetative-psychological manifestations of hypertensive disease. Terapevticheskii archive. – Therapeutic archive. 2016;88(5):55-61. (In Russ.). https://doi.org/10.17116/terarkh201688555-61
28. Chutko L. S., Surushkina S. Y., Yakovenko E. A., Rozhkova A. V., Volov M. B. [et al.]. Possibilities of using Cytoflavin in the treatment of cognitive and emotional disorders in patients with tension headaches. Zh. Nevrol. Psikhiatr. im. S. S. Korsakova. 2019;119(11):32-36. https://doi.org/10.17116/jnevro201911911132
29. Peresypkina A., Pazhinsky A., Pokrovskii M., Beskhmelnitsyna E., Pobeda A., Korokin M. Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate. Antioxidants (Basel). 2019;8(2):34. https://doi.org/10.3390/antiox8020034
30. Pavlova L., Kukes V., Shih E., Badridinova L., Berechikidze I., Degtyarevskaya T. Clinical diagnostic value of oxidative stress markers in patients with chronic heart failure. opportunities of their pharmacological correction by Etoxidol. Georgian Med. News. 2020;(300):49-53.
31. Blinov D. S., Gogina E. D., Skachilova S. Ya., Balashov V. P., Blinova E. V. [et al.]. Membranous mechanisms of antiarrhythmic effect or ethoxidol. Vestnik aritmologii. – Bulletin of arrhythmology. 2011;66:42-45. (In Russ.).
32. Kukes V. G. Results of a study of a domestic drug, the second generation antioxidant ethoxidol. M.: «MAKFiF», 2017. (In Russ.).
33. Ovsyannicova O. A., Karpeeva D. V., Osipenko M. D. The influence of the preparation «Etoxidol» on the absolute quantity of erythrocyte islets in the condition of sulfur dioxides impact on the different stages of ontogeny. Kubanskij nauchnyj medicinskij vestnik. – Kuban Scientific Medical Bulletin. 2017;1(162):99-103. (In Russ.). https://doi.org/10.25207/1608-6228-2017-1-99-103
34. Kukes V. G., Parfenova O. K., Romanov B. K., Prokofiev A. B., Parfenova E. V. [et al.]. The mechanism of action of Ethoxidol on oxidative stress indices in heart failure and hypotension. Modern Technologies in Medicine. 2020;12(2):67-73. https://doi.org/10.17691/stm2020.12.2.08
35. Kukes V., Shikh E., Zhestovskaya A., Prokofiev A., Drozdov V. Optimization of personalized therapy of patients with CHF. Vrach. – Doctor. 2018;29(2):69-70. (In Russ.). https://doi.org/10.29296/25877305-2018-02-17
36. Kukes V. G., Olefir Yu. V., Romanov B. K., Prokofiev A. B., Parfenova E. V. [et al.]. The Mechanism of Action of Follistatin-like Protein-1 (FSTL-1). Vedomosti Nauchnogo centra ekspertizi sredstv medicinskogo primeneniya. – Statement of the Scientific center of expertise of medical application products. 2019;9(4):256-260. (In Russ.). https://doi.org/10.30895/1991-2919-2019-9-4-256-260
37. Parfenova E. V., Zubkova E. S., Boldyreva M. A., Tsokolaeva Z. I., Olefir Yu. V. [et al.]. Investigation of the effect of Ethoxidol on the expression of follistatin-like protein-1 (FSTL-1) in the myocardium after an experimental infarction. Biomedicinskaya himiya. – Biomedical chemistry. 2020;66(3):250-256. (In Russ.). https://doi.org/10.18097/PBMC20206603250
38. Shchulkin A. V. A modern concept of antihypoxic and antioxidant effects of mexidol. Zh. Nevrol. Psikhiatr. im. S. S. Korsakova. 2018;118(12-2):87-93.
https://doi.org/10.17116/jnevro201811812287
39. Galenko-Yaroshevskii V. P., Bagmetova E. N., Fil’chukova I. A., Sidel’nikov A. Y., Popkov V. A. [et al.]. Antihypoxic and antinecrotic effect of mexidol in skin ischemia. Bull. Exp. Biol. Med. 2005;139(2):202-206. https://doi.org/10.1007/s10517-005-0248-8
40. Povarnina P. Y., Volkova A. A., Gudasheva T. A., Seredenin S. B. Comparison of the Pharmacological Effects of Dimeric Dipeptide Nerve Growth Factor Mimetic GK-2 and Mexidol on the Model of Ischemic Stroke in Rats. Bull. Exp. Biol. Med. 2017;164(2):173-176. https://doi.org/10.1007/s10517-017-3951-3
41. Riabchenko N. I., Riabchenko V. I., Ivannik B. P., Dzikovskaia L. A., Sin’kova R. V. [et al.]. Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents. Radiats. Biol. Radioecol. 2010;50(2):186-194.
42. Kirova Y. I., Shakova F. M., Germanova E. L., Romanova G. A., Voronina T. A. The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging. Zh. Nevrol. Psikhiatr. im. S. S. Korsakova. 2020;120(1):62-69. https://doi.org/10.17116/jnevro202012001162
43. Belaya O. L., Baider L. M., Kuropteva Z. V. Effect of mexidol and nitroglycerine on iron-sulfur centers, cytochrome P-450, and nitric oxide formation in liver tissue of experimental animals. Bull. Exp. Biol. Med. 2006;142(4):422-424. https://doi.org/10.1007/s10517-006-0382-y
44. Çakici N., Fakkel T. M., van Neck J. W., Verhagen A. P., Coert J. H. Systematic review of treatments for diabetic peripheral neuropathy. Diabet. Med. 2016;33(11):1466-1476. https://doi.org/10.1111/dme.13083
45. Abramenko Yu. V. The influence of mexidol on changes in the lipid-phospholipid profile in acute disorders of cerebral circulation in elderly patients. Nevrologiya, neyropsikhiatriya, psikhosomatika. – Neurology, neuropsychiatry, psychosomatics. 2018;10(2):68-75. (In Russ.). https://doi.org/10.14412/2074-2711-2018-2-68-75
46. Vertkin A. L. Effective tissue antiischemic therapy of etiologically various vascular diseases of the brain. Kardiovaskulyarnaya terapiya i profilaktika. – Cardiovascular Therapy and Prevention. 2016;15(2):69-78. (In Russ.). https://doi.org/10.15829/1728-8800-2016-2-69-78
47. Mirzoyan R. S., Gan’shina T. S, Lebedeva M. A., Gnezdilova A. V. Meksidol i sochetannaya sosudistaya patologiya mozga i serdtsa. Ehksperimental’naya i klinicheskaya farmakologiya. – Experimental and Clinical Pharmacology. 2011;6:20-23. (In Russ.). https://doi.org/10.30906/0869-2092-2011-74-6-20-23
48. Mrityunjaya M., Pavithra V., Neelam R., Janhavi P., Halami P. M., Ravindra P. V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020;11:570122. https://doi.org/10.3389/fimmu.2020.570122
49. Keflie T. S., Biesalski H. K. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition. 2021;84:111103. https://doi.org/10.1016/j.nut.2020.111103
50. Lammi C., Arnoldi A. Food-derived antioxidants and COVID-19. J. Food Biochem. 2021;45(1):e13557. https://doi.org/10.1111/jfbc.13557
51. Soto M. E., Guarner-Lans V., Soria-Castro E., Manzano Pech L., Pérez-Torres I. Is Antioxidant Therapy a Useful Complementary Measure for Covid-19 Treatment? An Algorithm for Its Application. Medicina (Kaunas). 2020;56(8):386. https://doi.org/10.3390/medicina56080386
52. Martín Giménez V. M., Inserra F., Tajer C. D., Mariani J., Ferder L. [et al.]. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci. 2020;254:117808. https://doi.org/10.1016/j.lfs.2020.117808
53. Colunga Biancatelli R. M. L., Berrill M., Catravas J. D., Marik P. E. [et al.]. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol. 2020;11:1451. https://doi.org/10.3389/fimmu.2020.01451

Keywords: oxidative stress, COVID-19, antioxidants, succinic acid, inosine, nicotinamide, riboflavin, ethyl methyl hydroxypyridine malate, ethyl methyl hydroxypyridine succinate


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy