Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 865 2352511, +7 865 2353229.


Predictive role of bactericidal/permeability-increasing protein and C-reactive protein in a personalized approach to the treatment of children with acute pneumonia

Marina Golubeva; Elena Rakitina; Sergey Minaev; Igor Kirgizov; Alexandr Obedin; Mikhail Aksel’rov; Natusya Barova; Elena Aleksandrovna Bochnyuk;

Our prospective nonrandomized controlled study enrolled 165 children with acute pneumonia (AP) from 2 to 18 years of age, which included 51 (30.9 %) children with ANP. There were 91 (55.2 %) boys and 73 (44.8 %) girls. Dynamic complex determination of BPI and CRP concentrations in blood serum from children with AP was a sensitive indicator to predict the development of complications and ANP. High levels of BPI and CRP in children with AP were prognostic signs for good outcomes of the disease. In the presence of an initially low BPI level (<10 ng/ml) and high CRP (>100 mg/L), disease progression was noted, which included the development of bronchopleural complications.


1. Tarakanov V. А., Barova N. К., Shumlivaya Т. P., Goloseev К. F., Кiselev А. N. Modern technology in the diagnosis and treatment of acute bacterial necrotizing pneumonia in children. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2015;5(1):50-56.
2. Barycheva L. Yu., Golubeva M. V., Kuzmina E. S., Rakitina E. N. Congenital infections and congenital malformation in children. Medical News of North Caucasus. 2019;14(3):5 08-512. https://doi.org/10.14300/mnnc.2019.14125
3. Minaev S. V., Filipeva N. V., Leskin V. V., Shchetinin E. V.,Golubeva M. V. [et al.] Microbiological spectrum of pyoinflammatory diseases causative agents in children at a multi-speciality hospital. Medical News of North Caucasus. 2018;13(1):112-114. https://doi.org/10.14300/mnnc.2018.13032
4. Tong S. Y. C., Davis J. S., Eichenberger E., Holland T. L., Fowler V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015;28(3):603-66. https://doi/org/10.1128/CMR.00134-14
5. Benedictis F. M., Kerem E., Chang A. B., Colin A. A., Zar H. J. [et al.] Complicated pneumonia in children. Lancet. 2020;396(10253):786-798. https://doi/org/10.1016/S0140-6736(20)31550-6
6. Vecherkin V. A., Toma D. A., Ptitsyn V. A., Koryashkin P. V. Destructive pneumonias in children. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2019;9(3):108-115. https://doi.org/10.30946/2219-4061-2019-9-3-108-115
7. Gross I., Gordon O., Cohen-Cymberknoh M., Reiter J., Tsabari R. [et al.] Giant lung cysts following necrotizing pneumonia: resolution with conservative treatment. Pediatr Pulmonol. 2019;54(6):901-906. https://doi/org/10.1002/ppul.24321
8. Tsai Y. F., Ku Y. H. Necrotizing pneumonia: a rare complication of pneumonia requiring special consideration. Curr. Opin. Pulm. Med. 2012;18(3):246-252. https://doi.org/10.1097/MCP.0b013e3283521022
9. Troeger C., Blacker B., Khalil I. A., Rao P. C., Cao J. [et al.] Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases. 2018;18(11):1191-1210. https://doi.org/10.1016/S1473-3099(18)30310-4
10. Margaroli C., Garratt L. W., Horati H., Dittrich A. S., Rosenow T. [et al.] Elastase Exocytosis by Airway Neutrophils Is Associated with Early Lung Damage in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019;199(7):873-881. https://doi.org/10.1164/rccm.201803-0442OC
11. Liu M., Li H., Xue C. X., Gu L., Qu J. X. [et al.] Differences in inflammatory marker patterns for adult community-acquired pneumonia patients induced by different pathogens. Clin. Respir. J. 2018;12(3):974-985. https://doi.org/10.1111/crj.12614
12. Jauneikaite E., Tocheva A. S., Jefferies J. M. Current methods for capsular typing of Streptococcus pneumoniae. J. Microbiol. Methods. 2015;113:41-49. https://doi.org/10.1016/j.mimet.2015.03.006
13. Iwuji K., Larumbe-Zabala E., Bijlani S., Nugent K., Kanu A. [et al.] Prevalence of Bactericidal/Permeability-Increasing Protein Autoantibodies in Cystic Fibrosis Patients: Systematic Review and Meta-Analysis. Pediatr. Allergy. Immunol. Pulmonol. 2019;32(2):45-51. https://doi.org/10.1089/ped.2018.0970
14. McQuillan K., Gargoum F., Murphy M. P., McElvaney O. J., McElvaney N. G. [et al.] Targeting IgG Autoantibodies for Improved Cytotoxicity of Bactericidal. Permeability Increasing Protein in Cystic Fibrosis. Front Pharmacol. 2020;11:1098. https://doi.org/10.3389/fphar.2020.01098
15. Janec K. J., Yuan H., Norton J. E., Kelner R. H., Hirt C. K. [et al.] rBPI21 (Opebacan) promotes rapid trilineage hematopoietic recovery in a murine model of high-dose total body irradiation. Am. J. Hematol. 2018;93:1002-1013. https://doi.org/10.1002/ajh.25136
16. Saxena S., Atchison C., Cecil E., Sharland M., Koshy E., Bottle A. Additive impact of pneumococcal conjugate vaccines on pneumonia and empyema hospital admissions in England. J. Infect. 2015;71:428-436. https://doi.org/10.1016/j.jinf.2015.06.011
17. Madhi F., Levy C., Morin L., Minodier P., Dubos F. [et al.] Pneumonia Study Group, Béchet S., Varon E., Cohen R.; GPIP (Pediatric Infectious Disease Group). Change in Bacterial Causes of Community-Acquired Parapneumonic Effusion and Pleural Empyema in Children 6 Years After 13-Valent Pneumococcal Conjugate Vaccine Implementation. J. Pediatric Infect. Dis. Soc. 2019;8(5):474-477. https://doi.org/10.1093/jpids/piy103
18. Pinkenburg O., Meyer T., Bannert N., Norley S., Bolte K. [et al.] The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus. PLoS One. 2016;11(6):e0156929. https://doi.org/10.1371/journal.pone.0156929
19. Liu S., Huang Z., Deng X., Zou X., Li H. [et al.] Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation. J. Cell. Mol. Med. 2021;25(3):1725-1738. https://doi.org/10.1111/jcmm.16275
20. Liu J., Zhao F., Lu J., Xu H., Liu H. [et al.] High Mycoplasma pneumoniae loads and persistent long-term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia. BMC Infect. Dis. 2019;19(1):1045. https://doi.org/10.1186/s12879-019-4667-y
21. Steiner P., Otth M., Casaulta C., Aebi C. Autoantibodies against bactericidal/permeability-increasing protein (BPI) in children with acute pneumonia. FEMS Immunol. Med. Microbiol. 2009;57(2):125-128. https://doi.org/10.1111/j.1574-695X.2009.00593.x
22. de Benedictis F. M., Carloni I. Management of necrotizing pneumonia in children: Time for a patient-oriented approach. Pediatr. Pulmonol. 2019;54(9):1351-1353. https://doi.org/10.1002/ppul.24412
23. Hoppe P. A., Holzhauer S., Lala B., Bührer C., Gratopp A. [et al.] Severe infections of Panton-Valentine leucocidin positive Staphylococcus aureus in children. Medicine (Baltimore). 2019;98(38):e17185. https://doi.org/10.1097/MD.0000000000017185
24. Bülow S., Zeller L., Werner M., Toelge M., Holzinger J. [et al.] Bactericidal/Permeability-Increasing Protein Is an Enhancer of Bacterial Lipoprotein Recognition. Front Immunol. 2018;9:2768. https://doi.org/10.3389/fimmu.2018.02768
25. Frybova B., Koucky V., Pohunek P., Cejnarova K., Coufal S. Lung Resection in Children with Necrotizing Pneumonia: Outcome and Follow-up. Eur. J. Pediatr. Surg. 2021;31:129-134. https://doi.org/10.1055/s-0041-1725188

Keywords: acute pneumonia, BPI, CRP, necrotizing pneumonia, inflammation, children

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy