logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Machine learning approach to classification of sleep electroencephalograms from newborns at risk of brain pathologies

[Neurology]
Stas Selitsky; Natalya Selitskaya; Joachim Schult;

This paper analyzes the Machine Learning approach to classifying sleep electroencephalograms recorded from newborns at risk of brain pathologies. The newborns were in different age groups counted in weeks of post conceptional age. We consider solutions of the EEG task as a multiclass problem which can be resolved with Decision Tree models, which efficiently predict the weeks of PCA in terms of accuracy. The efficient solution to the multiclass tasks is difficult to find as decision models have to be explored in an ample model parameter space. Moreover, the sleep EEGs have significant overlap between ages because of variations in the newborn maturation patterns and expert evaluations. The experimental results have demonstrated the ability of ML technologies to provide classification accuracy comparable with the expert’s opinions.

Download

References:
1. Jakaite L., Schetinin V., Maple C. Bayesian assessment of newborn brain maturity from two-channel sleep electroencephalograms. Computational and Mathematical Methods in Medicine. 2012(3):629654. https://doi.org/10.1155/2012/629654
2. Nyah N., Jakaite L., Schetinin V., Sant P., Aggoun A. Evolving polynomialneural networks for detecting abnormal patterns. In: 2016 IEEE 8th International Conference on Intelligent Systems. 2016:74-80. https://doi.org/10.1109/IS.2016.7737403
3. Miranda-Dominguez O., Mills B. D., Carpenter S. D., Grant K. A., Kroenke C. D. [et al.] Connectotyping: Model based finger-printing of the functional connectome. PLOS ONE. 2014;9(11):e111048. https://doi.org/10.1371/journal.pone.0111048
4. Schetinin V., Jakaite L., Nyah N., Novakovic D., Krzanowski W. Feature extraction with GMDH-type neural networks for EEG-based person identification. International Journal of Neural Systems. 2017;28(6). https://doi.org/10.1142/S0129065717500642
5. Selitskaya N., Seliski S., Jakaite L., Schetinin V., Evance F. [et al.] Deep learning for biometric face recognition: Experimental study on benchmark data sets. Deep Biometrics. 2020:71-970. https://doi.org/10.1007/978-3-030-32583-1_5
6. Guyer C., Werner H., Wehrle F., Bolsterli B. K., Hagmann C. [et al.] Brain maturation in the first 3 months of life, measured by electroencephalogram: A comparison between preterm and term-born infants. Clin. Neurophysiol. 2019;130(10):1859-1868. https://doi.org/10.1016/j.clinph.2019.06.230
7. Castro Conde J. R., González Campo C., González González N. L., Reyes Millán B., González Barrios D. [et al.] Assessment of neonatal EEG background and neurodevelopment in full-term small for their gestational age infants. Pediatr. Res. 2020;88(1):91-99. https://doi.org/10.1038/s41390-019-0693-0
8. Cohen E., Wong F. Y., Wallace E. M., Mockler J. C., Odoi A. [et al.] EEG power spectrum maturation in preterm fetal growth restricted infants. Brain Res. 2018;1678:180-186. https://doi.org/10.1016/j.brainres.2017.10.010
9. Schetinin V., Jakaite L., Krzanowski W. Bayesian averaging over decisiontree models: An application for estimating uncertainty in trauma severity scoring. International Journal of Medical Informatics. 2018;112:6-14. https://doi.org/10.1016/j.ijmedinf.2018.01.009
10. Schetinin V., Jakaite L., Krzanowski W. Bayesian averaging over decision treemodels for trauma severity scoring. Artificial Intelligence in Medicine. 2018;84:139-145. https://doi.org/10.1016/j.artmed.2017.12.003
11. Schetinin V., Jakaite L., Krzanowski W. Bayesian learning of models for estimating uncertainty in alert systems: Application to air traffic conflict avoidance. Integrated Computer-Aided Engineering. 2018;26:1-17. https://doi.org/10.3233/ica-180567
12. Akter M., Jakaite L. Extraction of texture features from x-ray images: Case ofosteoarthritis detection. Third International Congress on Information and Communication Technology. 2019:143-150. https://doi.org/10.1007/978-981-13-1165-9_13
13. Jakaite L., Schetinin V., Hladuvka J., Minaev S., Ambia A. [et al.] Deep learning for early detection of pathological changes in x-ray bone microstructures: case of osteoarthritis. Scientific Reports. 2021;11(1):e2294. https://doi.org/10.1038/s41598-021-81786-4
14. Schetinin V., Jakaite L. Extraction of features from sleep EEG for Bayesianassessment of brain development. PLоS ONE. 2017;12(3):e0174027. https://doi.org/10.1371/journal.pone.0174027
15. Low E., Mathieson S. R., Stevenson N. J., Livingstone V., Ryan C. A. [et al.] Early Postnatal EEG Features of Perinatal Arterial Ischaemic Stroke with Seizures. PLoS ONE. 2014;9(7):1-9. https://doi.org/10.1371/journal.pone.0100973
16. Frank E., Hall M. A simple approach to ordinal classification. In: Proceedingsof the 12th European Conference on Machine Learning. 2001; 2167(2167):145-156. https://doi.org/10.1007/3-540-44795-4_13
17. Furnkranz J. Pairwise classification as an ensemble technique. In: Proceedingsof the 13th European Conference on Machine Learning. 2002: 97–110.
18. Jakaite L., Schetinin V. Feature selection for Bayesian evaluation of trauma deathrisk. In: 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics: NBC. 2008:123-126. https://doi.org/10.1007/978-3-540-69367-3_33
19. Jakaite L., Schetinin V., Schult J. Feature extraction from electroencephalograms for Bayesian assessment of newborn brain maturity. In: Proceedings of the 24th IEEE International Symposium on Computer-Based Medical Systems. 2011. https://doi.org/10.1109/CBMS.2011.5999109
20. Kaminska A., Eisermann M., Plouin P. Child EEG (and maturation). Handb. Clin. Neurol. 2019;160:125-142. https://doi.org/10.1016/B978-0-444-64032-1.00008-4
21. Navarro X., Porée F., Kuchenbuch M., Chavez M., Beuchée A. [et al.] Multi-feature classifiers for burst detection in single EEG channels from preterm infants. J. Neural. Eng. 2017;14(4):046015. https://doi.org/10.1088/1741-2552/aa714a
22. Bishop C. M. Pattern Recognition and Machine Learning. Journal of Electronic Imaging. 16(4):140-155. https://doi.org/10.1117/1.2819119
23. Platt J., Cristianini N., Shawe-Taylor J. Large margin dags for multiclass classification. Advances in Neural Information Processing Systems. 2000;12:547-553.

Keywords: sleep EEG, newborn, postconceptional age, brain maturity, classification, Machine Learning, Artificial Intelligence


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy