logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Effect of SARS-CoV-2 infections on the male and female reproductive system (Meta-analysis)

[Reviews]
Grigory Demyashkin; Eugene Arturovna Kogan; Anna Khodzhayan; Tatyana Demura; Margarita Gevandova; Vladimir Ivanovich Shchekin; Ilya Alekseevich Zorin; Dmitry Vladimirovich Boldyrev;

In view of current pandemic situation with COVID-19, certain questions reasonably arise: what are the main ways of SARS-CoV-2 penetration into the organs of the male and female reproductive system; can this virus have a damaging effect on spermatogenesis; what are the possible complications? The identification of the mechanisms of COVID-19 pathogenesis will be helpful for further investigations and understanding of this disease. The results of the PCR to scRNA-seq revealed a high level of expression of TMPRSS-2 in spermatogonia and spermatids, and ACE-2 in spermatogonia, Sertoli and Leydig cells, seminiferous tubule epithelial cells, which was confirmed by Gene Ontology. ACE-2 receptors is detected at all stages of folliculogenesis, as confirmed by the results of the PCR, therefore, they are potential viral targets in the presence of viremia. In the endometrial epithelium, ACE-2 concentration varies depending on the phase of the menstrual cycle: high values are observed in the secretory phase, so can disrupt local angiotensin II homeostasis and endometrial regeneration. Thus, during the viremia period, the targets for SARS-CoV-2 can be Leydig cells, follicular and stromal cells of the ovary, since they are ACE-2 positive, although they do not have perfect co-expression of TMPRSS-2 or Furin protease.

Download

References:
1. Coronavirus resource center of the Johns Hopkins University of Medicine, 2020. Available at: https://coronavirus.jhu.edu/map.html.
2. Hoffmann M., Kleine-Weber H., Krüger N., Müller M., Drosten C. [et al.]. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020. Available at: www.biorxiv.org/content/10.1101/2020.01.31.929042v1. Accessed February 05, 2020.
3. Fan C., Li K., Ding Y., Lu W., Wang J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis DamageAfter 2019-nCoV Infection. MedRxiv. 2020. Available at: www.medrxiv.org/content/10.1101/2020.02.1
2.20022418v1.full.pdf+html. Accessed February 13, 2020.4. Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z. [et al.]. SARS-CoV-2 in- vades host cells via a novel route:CD147-spike protein. BioRxiv. 2020. Available at: www.biorxiv.org/content/10.1101/2020.03.14.988345v1. Accessed March 31, 2020.
5. Sungnak W., Huang N., Becavin C., Berg M., Queen R., Litvinukova M. [et al.]. SARS-CoV-2 entry factors are highly expressed in nasal epithe- lial cells together with innate immune genes. Nature Medicine. 2020;26:681-687. https://doi.org/10.1038/s41591-020-0868-6
6. Lardone M. C., Piottante A., Valdevenito R., Ebensperger M., Castro A. Histological and hormonal testicular function in oligo/azoospermic infertile men. Andrologia. 2013;45(6):379-385. https://doi.org/10.1111/and.12026
7. Gralinski L. E., Menachery V. D. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;24;12(2):135. https://doi.org/10.3390/v12020135
8. Ding Y., He L., Zhang Q., Huang Z., Che X. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622-630. https://doi.org/10.1002/path.1560
9. Xu J., Qi L., Chi X., Yang J., Wei X. [et al.]. Orchitis: a complication of severe acute respiratory syndrome (SARS)1. Biol. Reprod. 2006;74(2):410-416. https://doi.org/10.1095/biolreprod.105.044776
10. Dejucq N., Jegou В. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol. Mol. Biol. Rev. 2001;65(2):208-231. https://doi.org/10.1128/MMBR.65.2.208-231.2001
11. He L., Ding Y., Zhang Q., Che X., He Y. [et al.]. Expression of elevated levels of pro pro-inflammatory cytokines in SARS CoVCoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006;210(3):288-297. https://doi.org/10.1002/path.2067
12. Ma L., Xie W., Li D., Shi L., Mao Y. [et al.]. Effect of SARSCoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020. Available at: www.medrxiv.org/content/10.1101/2020.03.21.20037267v2. Accessed March 30, 2020.
13. Shen Q., Xiao X., Aierken A., Liao M., Hua J. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J. Cell. Mol. Med. 2020;24(16):9472-9477. https://doi.org/10.1111/jcmm.15541
14. Wang Z., Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of ACE2 Receptor, a Target for SARSCoV-2 Infection, in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020;9(4):920. https://doi.org/10.3390/cells9040920
15. Zhou L., Niu Z., Jiang X., Zhang Z., Zheng Y. [et al.]. Systemic analysis of tissue cells potentially vulnerable to SARS-CoV-2 infection by the protein-proofed single-cell RNA profiling of ACE2, TMPRSS2 and Furin proteases. MedRxiv. 2020. Available at: www.biorxiv.org/content/10.1101/2020.04.06.028522v1. Accessed April 10, 2020.
16. Li R., Yin T., Fang F., Li Q., Chen J. [et al.]. Potential risks of SARS-CoV-2 infection on reproductive health. Reproductive Bio. Medicine. 2020;41(1):89-95. https://doi.org/10.1016/j.rbmo.2020.04.018
17. Mascio D., Khalil A., Saccone G., Nappi L., Scambia G. [et al.]. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1-19) during pregnancy: a systematic review and meta-analysis. Am. J. Obstet. Gyncol. MFM. 2020;2(2):100107. https://doi.org/10.1016/j.ajogmf.2020.100107
18. Stanley K. E., Thomas E., Leaver M., Wells D. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020;114(1):33-43. https://doi.org/10.1016/j.fertnstert.2020.05.001
19. Uhlén M., Fagerberg L., Hallström B. M., Lindskog C., Oksvold P. [et al.]. Tissue-based map of the human proteome. Science. 2015;23;347(6220):1260419. https://doi.org/10.1126/science.1260419
20. Schwartz D. A., Graham A. L. Potential maternal and infant outcomes from Coronavirus 2019-nCoV (SARSCoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses. 2020;12(2):194. https://doi.org/10.3390/v12020194
21. Ferrazzi E. M., Frigerio L., Cetin I., Vergani P., Spinillo A. [et al.]. COVID-19 Obstetrics Task Force, Lombardy, Italy: executive management summary and short report of outcome. Internat. J. Gynecol. Obst. 2020;149(3):377-378. https://doi.org/10.1002/ijgo.13162
22. Conaldi P. G., Biancone L., Bottelli A., Martino A., Camussi G. [et al.]. Distinct pathogenic effects of group B coxsackieviruses on human glomerular and tubular kidney cells. J. Virol. 1997;71(12):9180-9187.
23. Nowakowski T. J., Pollen A., Lullo E., Sandoval-Espinosa C., Bershteyn M. [et al.]. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell. Stem. Cell. 2016;5;18(5):591-596. https://doi.org/10.1016/j.stem.2016.03.012
24. Jayawardena N., Burga L., Poirier J., Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother. 2019;8:39-56. https://doi.org/10.2147/OV.S218494

Keywords: COVID-19, SARS-CoV-2, spermatogenesis, folliculogenesis, pregnancy


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy