logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Dynamics of BDNF levels in the blood as a predictor of long-term efficiency of administering software-hardware in rehabilitation of children with cerebral palsy

[Neurology]
Natalya Valerievna Larina; Andrey Ivanovich Gordienko; Sergey V. Vlasenko; Natalia Vladimirovna Himich; Larisa Leonidovna Korsunskaya; Vladimir Borisovich Pavlenko;

The study of the dynamics of the BDNF level in the blood of children with infantile cerebral palsy (CP) at various stages of rehabilitation treatment using the hardware-software complex «Non-invasive interface «Brain – Computer – Exoskeleton of the hand-2» was carried out. The results of clinical and laboratory examination of 90 patients aged 12 to 18 years with spastic forms of cerebral palsy indicate that successful rehabilitation is closely associated with a pronounced decrease in the concentration of brain-derived neurotrophic factor in the peripheral blood on the 10th day after the completion of rehabilitation treatment, which may be used as an early predictor of its long-term effectiveness.

Download

References:
1. Lamberts R. P., Burger M., du Toit J., Langerak N. G. A Systematic Review of the Effects of Single-Event Multilevel Surgery on Gait Parameters in Children with Spastic Cerebral Palsy. PLoS ONE. 2016;11(10):e0164686. https://doi.org/10.1371/journal.pone.0164686
2. Rogoveanu O., Tuțescu N., Kamal D., Alexandru D., Kamal C. Correlations between risk factors and functional evolution in patients with spastic quadriplegia. J. Med. Life. 2016;9(2):170-176. https://doi.org/10.1016/journal.ejpn.201902001
3. Batysheva T. T., Krapivkin A. I., Tsaregorodtsev A. D., Sukhorukov V. S., Tikhonov S. V. Rehabilitation of children with the pathology of central nervous system. Rossiiskij vestnik perinatologii i pediatrii. – Russian Bulletin of Perinatology and Pediatrics. 2017;62(6):7-15. (In Russ). https://doi.org/10.21508/1027-4065-2017-62-6-7-15
4. Sadowska M., Sarecka-Hujar B., Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatric Disease and Treatment. 2020;16:1505-1518. https://doi.org/10.2147/NDT.S235165
5. Patel D. R., Neelakantan M., Pandher K., Merrick J. Cerebral palsy in children: a clinical overview. Translat. Рed. 2020;9(1):125-135. https://doi.org/10.21037/tp.2020.01.01
6. Provenzi L., Giusti L., Caglia M., Rosa E., Mascheroni E., Montirosso R. Evidence and Open Questions for the Use of Video-Feedback Interventions With Parents of Children With Neurodevelopmental Disabilities. Frontiers in Psychology. 2020;11:1374. https://doi.org/10.3389/fpsyg.2020.01374
7. Larina N. V., Korsunskaya L. L., Vlasenko S. V. The «Exo Hand-2» complex in the rehabilitation of the upper limb in cerebral palsy using the non-invasive interface «Brain-computer». Nervno-mishechnie bolezni. – Neuromuscular diseases. 2019;9(4):44-50. (In Russ.). https://doi.org/10.17650/2222-8721-2019-9-4-44-50
8. Korsunskaya L. L., Savchuk E. O., Larina N. V., Falaleev A. P., Savchuk E. A. [et al.]. The effect of the technology «Non-invasive interface «Brain – computer – exohand» in combination with nootropic therapy in the rehabilitation of children with cerebral palsy. Medicinskii vestnik Severnogo Kavkaza. – Medical News of North Caucasus. 2020;15(1):58-61. (In Russ.). https://doi.org/10.14300/mnnc.2020.15012
9. Skaper S. D. Neurotrophic Factors: An Overview. Methods Mol. Biol. 2018;1727:1-17. https://doi.org/10.1007/978-1-4939-7571-6_1
10. Kowiański P., Lietzau G., Ewelina Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mlec. Neurobiol. 2018;38:579-593 https://doi.org/10.1007/s10571-017-0510-4
11. Lucini C., D’Angelo L., Cacialli P., Palladino A., de Girolamo P. BDNF, Brain, and Regeneration: Insights from Zebrafish. Internat. J. Мolec. Sci. 2018;19:3155. https://doi.org/10.3390/ijms19103155
12. Lima Giacobbo B., Doorduin J., Klein H. C., Dierckx R., Bromberg E., de Vries E. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molec. Neurobiol. 2019;56(5):3295-3312. https://doi.org/10.1007/s12035-018-1283-6
13. Benarroch E. E. Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693-1704. https://doi.org/10.1212/WNL.0000000000001507
14. Zhang J. C., Yao W., Hashimoto K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr. Neuropharm. 2016;14(7):721-731. https://doi.org/10.2174/1570159x14666160119094646
15. Guo W., Nagappan G., Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Develop. Neurobiol. 2018;78(7):647-659. https://doi.org/10.1002/dneu.22592

Keywords: infantile cerebral palsy, interface «brain – computer – exohand», rehabilitation


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy