logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Hemocoagulation and lipoperoxidation processes and mechanisms of renal osmoregulatory function’s impairment in chronic intoxication with chromium compounds

[Experimental medicine]
Elmira Gagloeva; Vadim Brin; Varvara Ahpolova;

The prolonged intake of chromium into the body of experimental animals leads to the development of toxic nephropathy, accompanied by significant violations of hemocoagulation and lipid peroxidation processes. Correlation relationships between the changes in the indicators of renal osmoregulatory function and the changes in the indicators of anticoagulant and fibrinolytic links of the hemostatic system and the level of thrombinemia were revealed. These effects correlated with an increase in the level of lipid peroxidation products and a decrease in the activity of antioxidant blood enzymes. The results of the study make it possible to pathogenetically reasonably recommend the use of anticoagulants and antioxidants for the development of methods for the prevention and correction of the manifestations of toxic nephropathy when the body is exposed to chromium compounds.

Download

References:
1. Piotrowska A., Pilch W., Tota Ł., Nowak G. Biological significance of chromium III for the human organism. Medycyna Pracy. 2018;69(2):211-223. https://doi.org/10.13075/mp.5893.00625
2. Vincent J. B. New Evidence against Chromium as an Essential Trace Element. The Journal of Nutrition. 2017;147(12):2212-2219. https://doi.org/10.3945/jn.117.255901
3. Wu Y. H., Lin J. C., Wang T. Y. Hexavalent chromium intoxication induces intrinsic and extrinsic apoptosis in human renal cells. Molecular Medicine Reports. 2020;21(2):851-857. https://doi.org/10.3892/mmr.2019.10885
4. Chen Q. Y., Murphy A., Sun H., Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicology and Applied Pharmacology. 2019;377:114636. https://doi.org/10.1016/j.taap.2019.114636
5. Des Marais T. L., Costa M. Mechanisms of Chromium-Induced Toxicity. Current Opinion in Toxicology. 2019;14:1-7. https://doi.org/10.1016/j.cotox.2019.05.003
6. Husain N., Mahmood R. Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing and free radical quenching ability of the cells. Toxicology and Industrial Health. 2017;33(8):623-635. https://doi.org/10.1177/0748233717703892
7. Husain N., Mahmood R. Taurine attenuates Cr(VI)-induced cellular and DNA damage: an in vitro study using human erythrocytes and lymphocytes. Amino Acids. 2020;52(1):35-53. https://doi.org/10.1007/s00726-019-02807
8. Goodarzi Z., Karami E., Ahmadizadeh M. Simvastatin attenuates chromium-induced nephrotoxicity in rats. Journai of Nephropathology. 2017;6(1):5-9. https://doi.org/10.15171/jnp.2017.02
9. Gagloyeva E. M., Brin V. B., Skupnevskiy S. V., Botsiyeva N. V., Moldovan T. V. Vliyaniye khlorida nikelya na pokazateli gemokoagulyatsii i lipoperoksidatsii u krys v eksperimente. Patologicheskaya fiziologiya i eksperimental’naya terapiya. – Pathological physiology and experimental therapy. 2019;63(1):83-90. (In Russ)]. https://doi.org/10.25557/0031-2991.2019.01.83-90
10. Bhatti G. K., Bhatti J. S., Kiran R., Sandhir R. Alterations in Ca²⁺ homeostasis and oxidative damage induced by ethion in erythrocytes of Wistar rats: ameliorative effect of vitamin E. Environmental toxicology and pharmacology. 2011;31(3):378-386. https://doi.org/10.1016/j.etap.2011.01.004
11. Vihol P., Patel J., Varia R. D., Patel J. M. Effect of Sodium Dichromate on Haemato-biochemical Parameters in Wistar Rats. Journal of Pharmacology and Toxicology. 2012;7(1):58-63. https://doi.org/10.3923/jpt.2012.58.63
12. Ray R. R. Adverse hematological effects of hexavalent chromium: an overview. Interdisciplinary Toxicology. 2016;9(2):55-65. https://doi.org/10.1515/intox-2016-0007
13. Mary Momo C. M., Ferdinand N., Omer Bebe N. K. Oxidative Effects of Potassium Dichromate on Biochemical, Hematological Characteristics, and Hormonal Levels in Rabbit Doe (Oryctolagus cuniculus). Veterinary Sciences. 2019;6(1):30. https://doi.org/10.3390/vetsci6010030
14. El-Mahalaway A. M., Salem M. M., Mousa A. M. The effect of potassium dichromate on convoluted tubules of the kidney of adult male albino rats and the possible protective role of ginseng. Egyptian Journal of Histology. 2015;38(2):157-167. https://doi.org/10.1097/01.EHX.0000464738.41270.06
15. Junaid M., Hashmi M. Z., Malik, R. N. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environmental Science and Pollution Research. 2016;23:20151-20167. https://doi.org/10.1007/s11356-016-7463-x

Keywords: chromium, hemostasis, lipid peroxidation, kidney function


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy