Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 865 2352511, +7 865 2353229.


Bone mineral density of female rats in the process of adaptation to simulated durative intermittent hypobaric hypoxia

[Experimental medicine]
Nikolay Belyaev; Igor Vladimirovich Rzhepakovsky; Sergey Piskov; Vera Vadimovna Plyuiko;

The estimation of femoral mineral density by Х-ray computer microtomography and indicators of adaptive processes in female rats in the simulation of chronic intermittent hypobaric hypoxia is presented. An increase in heart and adrenal mass, an increase in the number of red blood cells and hemoglobin were markers of compensatory processes. The obtained results indicate that long-term intermittent exposure to hypobaric hypoxia, both in conditions of severe adaptation, and with a gradual build-up of the stress factor, can lead to osteoporotic changes in the bone tissue.


1. Dempsey J. A., Morgan B. J. Humans In Hypoxia: A Conspiracy Of Maladaptation?! Physiology (Bethesda). 2015;30(4):304-316. https://doi.org/10.1152/physiol.00007.2015
2. Martinez-Bello V. E., Sanchis-Gomar F., Nascimento A. L., Pallardo F. V., Ibañez-Sania S. [et al.]. Living at high altitude in combination with sea-level sprint training increases hematological parameters but does not improve performance in rats. European Journal of Applied Physiology. 2010;111(6):1147-1156. https://doi.org/10.1007/s00421-010-1740-z
3. Ekström M., Ringbaek T. Which patients with moderate hypoxemia benefit from long-term oxygen therapy? Ways forward. International journal of chronic obstructive pulmonary disease. 2018;13:231-235. https://doi.org/10.2147/COPD.S148673
4. Johnson R. W., Sowder M. E., Giaccia A. J. Hypoxia and Bone Metastatic Disease. Current Osteoporosis Reports. 2017;15(4):231-238. https://doi.org/10.1007/s11914-017-0378-8
5. Yellowley C. E., Genetos D. C. Hypoxia Signaling in the Skeleton: Implications for Bone Health. Current Osteoporosis Reports. 2019;17(1):26-35. https://doi.org/10.1007/s11914-019-00500-6
6. Caris A., Santos R. V. T. Performance and altitude: is there anything that nutrition can do for it? Nutrition. 2019;60:35-40. https://doi.org/10.1016/j.nut.2018.09.030
7. Stembridge Mike. Benjamin D. Levine. No heartbreak at high altitude; preserved cardiac function in chronic hypoxia. Experimental Physiology. 2019;104(5):619-620. https://doi.org/10.1113/EP087665
8. Stewart G. M., Wheatley-Guy C. M., Morris N. R., Cofman K. E., Stepanek J. [et al.]. Myocardial adaptability in young and older-aged sea-level habitants sojourning at Mt Kilimanjaro: are cardiac compensatory limits reached in older trekkers?. European Journal of Applied Physiology. 2020;120:799-809. https://doi.org/10.1007/s00421-020-04319-3
9. Bouxsein M. L., Boyd S. K., Christiansen B. A., Guldberg R. E., Jepsen K. J., Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research. 2010;25(7):1468-1486. https://doi.org/10.1002/jbmr.141

Keywords: hypoxic hypoxia, chronic hypobaric hypoxia, bone mineral density, female rats, adaptation

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy