logo
Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137
rus
русский
eng
english

Site search



Correspondence address
310 Mira Street, Stavropol, Russia, 355017

Tel
+7 865 2352511, +7 865 2353229.

E-mail
medvestnik@stgmu.ru

Modeling of cystic fibrosis in HEK293t cell culture and of a method for the correction of F508del mutation

[Cystic fibrosis]
Svetlana Anatolevna Smirnikhina; Ekaterina Vladimirovna Kondratyeva; Arina Arturovna Anuchina; Milyausha Irshatovna Zaynitdinova; Alexander Vyacheslavovich Lavrov;

The work was carried out to study the possibility of modeling of cystic fibrosis in HEK293T cell culture and the correction of the F508del mutation using the CRISPR/Cas9 method. Four sgRNAs in combination with three Cas9 nucleases and two DNA repair templates were tested. Modeling of cystic fibrosis in HEK293T cell culture was achieved by transfection of an additional plasmid pGEM-CFTR containing the CFTR locus with the F508del mutation into cells. The efficacy of mutation editing was assessed using deep targeted sequencing. The average editing efficiency of the CFTR locus was 5.5 %. The mutation correction frequency ranged from 0.08 % to 0.7 % alleles, depending on the combination of used CRISPR/Cas9 components. The accuracy of different Cas9/sgRNA combinations ranged from 61.4 % to 90.9 %, the maximum value was recorded for saCas9/saCFTR#3. The possibility of modeling cystic fibrosis in a HEK293T cell culture using a synthetic plasmid was demonstrated and the correction efficiency of the F508del mutation using various CRISPR/Cas9 combinations was evaluated

Download

References:
1.Derichs N. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur. Respir. Rev. 2013;22:58-65. https://doi.org/10.1183/09059180.00008412
2. Cystic Fibrosis Foundation. Patient registry: annual data report, 2017. Bethesda, Maryland, 2018. Available at: https://www.cff.org/Research/Researcher-Resources/ Patient-Registry/2017-Patient-Registry-Annual-DataReport.pdf. Accessed November 27, 2019.
3. Rowe S. M., McColley S. A., Rietschel E., Li X., Bell S. C. [et al.]. Lumacaftor/Ivacaftor Treatment of Patients with Cystic Fibrosis Heterozygous for F508del-CFTR. Ann. Am. Thorac. Soc. 2017;14(2):213-219. https://doi.org/10.1513/AnnalsATS.201609-689OC
4. Smirnikhina S. A., Lavrov A. V. Modern pathogenesis-based methods and development of new gene and cell-based methods for cystic fibrosis treatment. Geny & Kletki. – Genes & Cells. 2018;3(XIV):23-31. (In Russ.). https://doi.org/10.23868/201811029
5. Zhang F., Wen Y., Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 2014;23(R1):R40-46. https://doi.org/10.1093/hmg/ddu125
6. Lee C. M., Flynn R., Hollywood J. A., Scallan M. F., Harrison P. T. Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. Biores. Open. Access. 2012;1(3):99-108. https://doi.org/10.1089/biores.2012.0218
7. Schwank G., Koo B. K., Sasselli V., Dekkers J. F., Heo I. [et al.]. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell.Stem. Cell. 2013;13(6):653-658.
https://doi.org/10.1016/j.stem.2013.11.002
8. Firth A. L., Menon T., Parker G. S., Qualls S. J., Lewis B. M. [et al.]. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell. Rep. 2015;12(9):1385-1390. https://doi.org/10.1016/j.celrep.2015.07.062
9. Bednarski C., Tomczak K., Vom Hövel B., Weber W. M., Cathomen T. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS. One. 2016;11(8):e0161072. https://doi.org/10.1371/journal.pone.0161072
10. Merkert S., Bednarski C., Göhring G., Cathomen T., Martin U. Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem. Cell. Res. 2017;23:95-97. https://doi.org/10.1016/j.scr.2017.07.010
11. Peters-Hall J. R., Coquelin M. L., Torres M. J., LaRanger R., Alabi B. R. [et al.]. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;315(2):L313-L327. https://doi.org/10.1152/ajplung.00355.2017
12. Ruan J., Hirai H., Yang D., Ma L., Hou X. [et al.]. Efficient Gene Editing at Major CFTR Mutation Loci. Mol. Ther. Nucleic. Acids. 2019;16:73-81. https://doi.org/10.1016/j.omtn.2019.02.006
13. CFTR2 – Clinical and Functional Translation of CFTR. Available at: https://www.cftr2.org. Accessed November 27, 2019.
14. Sanz D. J., Hollywood J. A., Scallan M. F., Harrison P. T. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One. 2017;12(9):e0184009. https://doi.org/10.1371/journal.pone.0184009
15. Smirnikhina S. A., Anuchina A. A., Kochergin-Nikitsky K. S., Adilgereeva E. P., Yakushina V. D. [et al.]. Experimental approaches to the target editing of the CFTR gene using CRISPR-Cas9. Bulletin of RSMU. 2018;2:14-20. https://doi.org/10.24075/vrgmu.2018.022
16. Slaymaker I. M., Gao L., Zetsche B., Scott D. A., Yan W. X. [et al.]. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-88. https://doi.org/10.1126/science.aad5227
17. Kleinstiver B. P., Pattanayak V., Prew M. S., Tsai S. Q., Nguyen N. T. [et al.]. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-495. https://doi.org/10.1038/nature16526
18. Ran F. A., Cong L., Yan W. X., Scott D. A., Gootenberg J. S. [et al.] In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186-191. https://doi.org/10.1038/nature14299
19. Clement K., Rees H., Canver M. C., Gehrke J. M., Farouni R. [et al.]. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 2019;37(3):224-226. https://doi.org/10.1038/s41587-019-0032-3
20. Richardson C. D., Ray G. J., DeWitt M. A., Curie G. L., Corn J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 2016;34(3):339- 344. https://doi.org/10.1038/nbt.3481

Keywords: fibrosis, CFTR, genome editing, CRISPR/Cas9, F508del, HEK293T


Founders:
Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy