Medical news
of the North Caucasus
Scientific journal
Mass media registration certificate dated December 7, 2006.
Series ПИ #ФС 77-26521.
Federal service for surveillance over non-violation of the legislation in the sphere of mass communications and protection of cultural heritage.
ISSN 2073-8137

Site search

Correspondence address
310 Mira Street, Stavropol, Russia, 355017

+7 865 2352511, +7 865 2353229.


Genophenotypic relationships in cystic fibrosis on the basis of 2017 national register data

[Cystic fibrosis]
Stanislav Aleksandrovich Krasovsky; Elena Ivanovna Kondratieva; Alexander Vladimirovich Chernyak; Natalia Yuryevna Kashirskaya; Tagui Avetikovna Adyan; Elena Lvovna Amelina; Anna Yuryevna Voronkova; Oksana Grigorievna Zonenko;

The aim of the study was to evaluate the geno-phenotypic relationships in 3096 patients with cystic fibrosis, according to the Russian National Register. The analysis of the influence of «mild» (498 cases) and «severe» genotypes (1765 examined persons) on the course and treatment of cystic fibrosis was carried out. Differences between groups of patients by age, time of diagnosis, anthropometric status, respiratory function, frequency of meconium ileus, diabetes mellitus, liver cirrhosis, volume of therapy were revealed. The presence of a «severe» genotype in a patient with cystic fibrosis is negatively associated with nutritional status, with the likelihood of the digestive system complications and the volume of treatment.


1. Elborn J. S. Cystic fibrosis. Lancet. 2016;388(10059):2519-2531. https://doi.org/10.1016/S0140-6736(16)00576-6
2. Kapranov N. I.,Kashirskaya N. Yu. Сystic fibrosis. Moscow.: «MEDPRAKTIKA-M», 2014. (In Russ.).
3. Cystic Fibrosis Mutation Database (СFTR1). Available at: http://genet.sickkids.on.ca. Accessed January 19, 2020.
4. The Clinical and Functional Translation of CFTR (CFTR2). Available at: https://www.cftr2.org. Accessed January 19, 2020.
5. Dechecchi M. C., Tamanini A., Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. Ann. Transl. Med. 2018;6(17):334. https://doi.org/10.21037/atm.2018.06.48
6. Castellani C., Cuppens H., Macek M., Сassiman J. J., Kerem E. [et al.]. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J. Cyst. Fibros. 2008;8:179-196. https://doi.org/10.1016/j.jcf.2008.03.009
7. Sosnay P. R., Siklosi K. R., Van Goor F., Kaniecki K., Yu H. [et al.]. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 2013;45(10):1160-1167. https://doi.org/10.1038/ng.2745
8. McKone E. F., Goss С. Н., Aitken М. L. CFTR genotype as a predictor of prognosis in cystic fibrosis. Chest. 2006;130(5):1441-1447.
9. Krasovsky S. A., Petrova N. V., Stepanova A. A., Usacheva M. V, Samoilenko V. A. [et al.]. Clinical course of cystic fibrosis on adult patients carrying «mild» mutations. Pulmonologiya. – Pulmonology. 2012;6:5-11 (In Russ.).
10. Register of patients with cystic fibrosis in the Russian Federation. 2017. Edited by A. Yu. Voronkova, E. L. Amelina, N. Yu. Kashirskaya, E. I. Kondratieva, S. A. Krasovsky [et al.]. Moscow: «MEDPRAKTIKA-M», 2019. (In Russ.).
11. Bonadia L. C., de Lima Marson F. A., Ribeiro J. D., Paschoal I. A., Pereira M. C. [et al.]. CFTR genotype and clinical outcomes of adult patients carried as cystic fibrosis disease. Gene. 2014;540(2):183-190. https://doi.org/10.1016/j.gene.2014.02.040
12. Stylemans D., Verbanck S., Vincken S., Vincken W., De Wachter E. [et al.]. Pulmonary function patterns and their association with genotype and phenotype in adult cystic fibrosis patients. Acta. Clin. Belg. 2019;74(6):386-392. https://doi.org/10.1080/17843286.2018.1533716
13. Bombieri C., Seia M., Castellani C. Genotypes and phenotypes in cystic fibrosis and cystic fibrosis transmembrane regulator-related disorders. Semin. Respir. Crit. Care. Med. 2015;36(2):180-193. https://doi.org/10.1055/s-0035-1547318
14. Fraquelli M., Baccarin A., Corti F., Conti C. B., Russo M. C. [et al.]. Bowel ultrasound imaging in patients with cystic fibrosis: Relationship with clinical symptoms and CFTR genotype. Dig. Liver Dis. 2016;48(3):271-276. https://doi.org/10.1016/j.dld.2015.09.010
15. Berkhout M. C., van Rooden C. J., Rijntjes E., Fokkens W. J., Bouazzaoui L. H. [et al.]. Sinonasal manifestations of cystic fibrosis: a correlation between genotype and phenotype? J. Cyst. Fibros. 2014;13:442-448. https://doi.org/10.1016/j.jcf.2013.10.011
16. Lucarelli M., Bruno S. M., Pierandrei S., Ferraguti G., Stamato A. [et al.]. A genotypic-oriented view of CFTR genetics highlights specific mutational patterns underlying clinical macrocategories of cystic fibrosis. Mol. Med. 2015;21:257-275.
17. McKone E. F., Velentgas P., Swenson A. J., Goss C. H. Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype. J. Cyst. Fibros. 2015;14(5):580-586. https://doi.org/10.1016/j.jcf.2015.01.005
18. Dupuis A., Keenan K., Ooi C. Y., Dorfman R., Sontag M. K. [et al.]. Prevalence of meconium ileus marks the severity of mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Genet. Med. 2016;18(4):333-340. https://doi.org/10.1038/gim.2015
19. Cystic Fibrosis Foundation Patient Registry. 2017 Annual Data Report. Bethesda, Maryland © 2018 Cystic Fibrosis Foundation Available at: https://www.cff.org/. Accessed January 19, 2020.

Keywords: cystic fibrosis, register, genetics

Stavropol State Medical Academy
Pyatigorsk State Research Institute of Balneotherapeutics
Pyatigorsk State Pharmaceutical Academy